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VARIATIONS OF THE TELESCOPE CONJECTURE AND

BOUSFIELD LATTICES FOR LOCALIZED CATEGORIES OF

SPECTRA

F. LUKE WOLCOTT

Abstract. We investigate several versions of the telescope conjecture on lo-
calized categories of spectra, and implications between them. Generalizing the
“finite localization” construction, we show that on such categories, localizing
away from a set of strongly dualizable objects is smashing. We classify all
smashing localizations on the harmonic category, HFp-local category and I-
local category, where I is the Brown-Comenetz dual of the sphere spectrum;
all are localizations away from strongly dualizable objects, although these cat-
egories have no nonzero compact objects. The Bousfield lattices of the har-
monic, E(n)-local, K(n)-local, HFp-local and I-local categories are described,
along with some lattice maps between them. One consequence is that in none
of these categories is there a nonzero object that squares to zero. Another is
that the HFp-local category has localizing subcategories that are not Bousfield
classes.

1. Introduction

The telescope conjecture, first stated by Ravenel [Rav84, Conj. 10.5], is a claim
about two classes of localization functors in the p-local stable homotopy category
of spectra. First, one can localize away from a finite type n+1 spectrum F (n+1);
the acyclics are the smallest localizing subcategory containing F (n + 1), and we
denote this functor Lf

n. Second, one can localize at the wedge of the first n + 1
Morava K-theories K(0) ∨ · · · ∨K(n); the acyclics are all spectra that smash with
K(0) ∨ · · · ∨ K(n) to zero and this is denoted Ln. Both these localizations are
smashing, i.e. they commute with coproducts. The telescope conjecture (TCn),
basically, claims that Lf

n and Ln are isomorphic. In fact, here we consider three
slightly different versions, TC1n, TC2n, and TC3n, of the telescope conjecture. In
Section 3 we articulate them carefully and show implications between them.

The conjecture is known to hold for n = 0 [Rav92, p. 79], and for n = 1 when
p = 2 [Mah82] and p > 2 [Mil81]. A valiant but unsuccessful effort at a counterex-
ample, for n ≥ 2, was undertaken by Mahowald, Ravenel, and Shick, as outlined
in [MRS01]. Since then little progress has been made, and the original conjecture
remains open.

A generalization of the telescope conjecture can be stated for spectra, as well
as other triangulated categories. Localization away from a finite spectrum, i.e. a
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2 F. LUKE WOLCOTT

compact object of the category, always yields a smashing localization functor (see
e.g. [Bou79, Prop. 2.9] or [Mil92] or [HPS97, Thm. 3.3.3]). The Generalized Smash-
ing Conjecture (GSC) is that every smashing localization arises in this way. If true,
then every smashing localization is determined by its compact acyclics; if the GSC

holds in spectra, then so must the TCn for all n.
The GSC, essentially stated for spectra decades ago by Bousfield [Bou79b, Conj. 3.4],

has been formulated in many other triangulated categories, in many cases labeled
as the telescope conjecture, and in many cases proven to hold. Neeman [Nee92]
made the conjecture for the derived category D(R) of a commutative ring R, and
showed it holds when the ring is Noetherian. See also [HPS97, Thm. 6.3.7] or [KS10]
for a generalization. On the other hand, Keller [Kel94] gave an example of a non-
Noetherian ring for which the GSC fails. Benson, Iyengar, and Krause have shown
that the GSC holds in a stratified category [BIK11], such as the stable module cat-
egory of a finite group [BIK11b]. Balmer and Favi [BF11] show that in a tensor
triangulated category with a good notion of support, the GSC is a “local” question.

It is worth noting that there are further variations of the GSC, which we won’t
consider here. Krause [Kra00] formulated a variation of the GSC, in terms of subcat-
egories generated by sets of maps, that makes sense (and holds) for any compactly
generated triangulated category. Krause and Solberg give a variation for stable
module categories, stated in terms of cotorsion pairs [KS03]. See also [Kra05,
AHST08,Brü07,Sto10].

To date, Keller’s ring yields the only category where the GSC is known to fail.
In this paper we give several more examples. Incidentally, each is a well generated
triangulated category that is not compactly generated.

One of our main results is the following. We weaken the assumptions for “finite
localization”, and show that in many categories, localization away from any set of
strongly dualizable objects yields a smashing localization. (Recall that an object
X is strongly dualizable if F (X,Y ) ∼= F (X, 1) ∧ Y for all Y , where 1 is the tensor
unit and F (−,−) the function object bifunctor.) Let loc(X) denote the smallest
localizing subcategory containing X . We prove the following as Theorem 3.5.

Theorem A: Let T be a well generated tensor triangulated category such that
loc(1) = T. Let A = {Bα} be a (possibly infinite) set of strongly dualizable objects.
Then there exists a smashing localization functor L : T → T with Ker L = loc(A).

Thus we are led to conjecture the following.

Strongly Dualizable Generalized Smashing Conjecture (SDGSC): Every
smashing localization is localization away from a set of strongly dualizable objects.

We give several examples of categories where the GSC fails, but the SDGSC holds.
In fact, we consider a topological setting, where one can also formulate a version
(or versions, rather) of the original telescope conjecture.

Specifically, we consider localized categories of spectra. Let S be the p-local
stable homotopy category, and let ∧ denote the smash, i.e. tensor, product. Take Z
an object of S, and let L = LZ : S → S be the localization functor that annihilates
Z∗-acyclic objects. The full subcategory of L-local objects, that is, objects X for
which X→LX is an equivalence, has a tensor triangulated structure induced by
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that of S. Let L denote this category; the triangles are the same as in S, the
coproduct is X

∐
L Y = L(X

∐
Y ) and the tensor is X ∧L Y = L(X ∧ Y ).

In Definition 3.6, we define localization functors lfn and ln on L that are local-
ized versions of Lf

n and Ln. The localized telescope conjecture (LTC), basically,
is that lfn and ln are isomorphic. In fact, we give three versions of the LTC, and
in Theorems 3.12 and 3.13 establish implications between them. Then, examining
specific examples of localized categories of spectra, we conclude the following in
Theorems 4.3, 5.11, 6.1, 6.5 and 6.9 and Corollary 5.6.

Theorem B: All versions of the localized telescope conjecture, LTC1i, LTC2i, and
LTC3i hold for all i ≥ 0, in the

∨
n≥0 K(n)-local (i.e. harmonic), K(n)-local, HFp-

local, BP -local, and I-local categories, where I is the Brown-Comenetz dual of the
sphere spectrum.

In order to consider the GSC and SDGSC in L, we must classify the smashing
localizations on L. We are able to do this in several examples.

Theorem C: In the harmonic category, the GSC fails but the SDGSC holds. Like-
wise in the HFp-local and I-local categories. In the BP -local category the GSC

fails but the SDGSC is open. In the E(n)-local and K(n)-local categories the GSC

and SDGSC both hold.

Proof. This is Theorems 4.4 and 5.11, Propositions 6.3 and 6.10, and Corollar-
ies 5.6 and 6.7. �

One novelty in our approach is our use of Bousfield lattice arguments. Given
an object X in a tensor triangulated category T, the Bousfield class of X is 〈X〉 =
{W | W ∧ X = 0}. It is now known [IK13] that every well generated tensor
triangulated category has a set of Bousfield classes. This set has the structure of a
lattice, and is called the Bousfield lattice of T. One can now attempt to calculate the
Bousfield lattices of categories of localized spectra. Furthermore, every smashing
localization yields a pair of so-called complemented Bousfield classes. Information
about the Bousfield lattice of a category gives information about its complemented
classes, which gives information about the smashing localization functors on the
category.

Moreover, the first version of the telescope conjecture TC1n is that two spectra
T (n) and K(n) have the same Bousfield class. In the localized version this becomes
(LTC1n) the claim that 〈LT (n)〉 = 〈LK(n)〉 in the Bousfield lattice of L. One is
thus led to investigating Bousfield lattices of localized spectra.

Corollary 2.7 gives an upper bound, 22
ℵ0

, on the cardinality of such lattices.
Jon Beardsley has calculated the Bousfield lattice of the harmonic category to be
isomorphic to the power set of N; we give this calculation in Proposition 4.2. In
Corollary 5.4 and Proposition 5.7 we show that one can realize this lattice as an
inverse limit of the Bousfield lattices of E(n)-local categories, as n ranges over
N. Then in Corollary 5.10 and Propositions 6.2 and 6.6, we show that the K(n)-
local, HFp-local, and I-local categories all have two-element Bousfield lattices. In
Proposition 6.11 we give a lower bound, 2ℵ0 , on the cardinality of the Bousfield
lattice of the BP -local category.
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One immediate object-level application of these Bousfield lattice calculations is
the following. Call an object X square-zero if it is nonzero, but X ∧X = 0. Then
Proposition 2.9 shows that there are no square-zero objects in the harmonic, E(n)-,
K(n)-, HFp-, or I-local categories.

We are also able to answer the analogue of a conjecture by Hovey and Palmieri,
originally stated for the stable homotopy category. Conjecture 9.1 in [HP99] is that
every localizing subcategory is a Bousfield lattice. Proposition 6.4 demonstrates
that this fails in the HFp-local category, by giving two localizing subcategories that
are not Bousfield classes.

Section 2 establishes the categorical setting, and provides background on lo-
calization, Bousfield lattices, and stable homotopy theory. Section 3 defines the
various versions of the telescope conjecture, for spectra and for localized spectra,
and establishes implications among them. The remainder of the paper is devoted to
examining specific examples: the harmonic category (Section 4), the E(n)-local and
K(n)-local categories (Section 5), and the HFp-local, I-local, BP -local, and F (n)-
local categories (Section 6). All results are new unless cited. Most of the results on
the E(n)-local and K(n)-local categories in Section 5 follow in a straightforward
way from Hovey and Strickland’s work in [HS99], and are included for completeness.

We would like to thank Dan Christensen for extensive discussions and sugges-
tions, and Jon Beardsley for Proposition 4.2.

2. Preliminaries

2.1. Categorical setting. We start with the notion of a tensor triangulated cat-
egory C; i.e. a triangulated category with set-indexed coproducts and a closed
symmetric monoidal structure compatible with the triangulation [HPS97, App.A].
Let Σ : C → C denote the shift, [X,Y ] the morphisms from X to Y , and [X,Y ]n =
[ΣnX,Y ] for any n ∈ Z.

Let − ∧ − denote the smash (tensor) product, 1 denote the unit, and F (−,−)
denote the function object bifunctor; F (X,−) is the right adjoint to X ∧−. Recall
that an object X in C is said to be strongly dualizable if the natural map DX ∧
Y → F (X,Y ) is an isomorphism for all Y , where DX = F (X, 1) is the Spanier-
Whitehead dual. Since F (1, X) ∼= X for all X , the map F (1, 1) ∧ Y → F (1, Y ) is
an equivalence and 1 is always strongly dualizable.

For a regular cardinal α, we say an object X is α-small if every morphism
X →

∐
i∈I Yi factors through

∐
i∈J Yi for some J ⊆ I with |J | < α. If X is

ℵ0-small we say X is compact ([HPS97] calls this small); this is equivalent to the
condition that the natural map ⊕i∈K [X,Zi] → [X,

∐
i∈K Zi] is an isomorphism for

any set-indexed coproduct
∐

i∈K Zi. We say C is α-well generated if it has a set of
perfect generators [Kra10, Sect. 5.1] which are α-small, and C is well generated if it
is α-well generated for some α. See [Kra10] for more details.

A localizing subcategory is a triangulated subcategory of C that is closed under
retracts and coproducts; a thick subcategory is a triangulated subcategory that is
closed under retracts. Given an object or set of objects X , let loc(X) (resp. th(X))
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denote the smallest localizing (resp. thick) subcategory containing X . We say that
loc(X) is generated by X .

Definition/Notation 2.1. Throughout this paper let T be a well generated tensor
triangulated category such that loc(1) = T.

In the language of [HPS97], such a T is almost a “monogenic stable homotopy
category”, except that we do not insist that the unit 1 is compact.

In practice, in this paper T will always be either the p-local stable homotopy cat-
egory of spectra S or the category LZ of LZ-local objects derived from a localization
functor LZ : S → S. The former satisfies Definition 2.1 by [HPS97, Ex. 1.2.3(a)],
and the latter by Theorem 2.3 and Lemma 2.4 below.

2.2. Background on localization. Recall that a localization functor (or simply
localization) on a tensor triangulated category C is an exact functor L : C → C,
along with a natural transformation η : 1 → L such that Lη is an equivalence
and Lη = ηL. We call Ker L the L-acyclics. It follows that there is an exact
functor C : C → C, called colocalization, such that every X in C fits into an exact
triangle CX → X → LX , with CX L-acyclic. An object Y is L-local if it is in the
essential image of L, and this is equivalent to satisfying [Z, Y ] = 0 for all L-acyclic
Z. See [HPS97, Ch. 3] or [Kra10] for further background.

We also recall two special types of localizations. A localization L : C → C is said
to be smashing if L preserves coproducts, equivalently if LX ∼= L1∧X for all X .

Given a set A of objects of C, we say that a localization functor L : C →
C is localization away from A if the L-acyclics are precisely loc(A). If such a
localization exists, we also say it is generated by A. When C = S, it is well known
(e.g. [Mil92,MS95]) that localization away from a set of compact objects exists,
and yields a smashing localization functor. As mentioned in the introduction, this
result has been generalized to other categories as well (e.g. [HPS97, Thm. 3.3.3],
[BF11, Thm. 4.1]). We present a further generalization in Theorem 3.5.

In this paper we will restrict our attention to homological localizations, which we
now describe. Given an object Z in a tensor triangulated category C, the Bousfield
class of Z is defined to be

〈Z〉 = {W ∈ C | W ∧ Z = 0}.

Extending a classical result of Bousfield’s for S, Iyengar and Krause recently
showed [IK13, Prop. 2.1] that for every object Z in a well generated tensor trian-
gulated category C, there is a localization functor LZ : C → C with LZ-acyclics
precisely 〈Z〉. We call such an LZ homological localization at Z.

Notation 2.2. Let T be as in Definition 2.1, with tensor unit 1. For an object Z in
T, let LZ : T → T be homological localization at Z. Let LZ denote the category of
LZ-local objects, the essential image of LZ.

Theorem 2.3. [HPS97, 3.5.1,3.5.2] Let L = LZ : T → T be a localization, and
LZ the category of LZ-local objects. Then LZ has a natural structure as a tensor
triangulated category, generated by LZ1, which is the unit. Considered as a functor
from T to LZ , L preserves triangles, the tensor product and its unit, coproducts,
and strong dualizability. Furthermore, L preserves compactness if and only if L is
a smashing localization.
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Explicitly, for L-local objects X , Xi and Y , in L we have
∐

L Xi = L(
∐

T Xi)
and X ∧L Y = L(X ∧T Y ) and FL(X,Y ) = F (X,Y ). Note that LZ1 is strongly
dualizable but may not be compact in LZ .

Lemma 2.4. The category LZ is well generated.

Proof. By Proposition 2.1 of [IK13], the LZ-acyclics 〈Z〉 form a well generated
localizing subcategory of T. Then by [Kra10, Thm. 7.2.1], the Verdier quotient
T/〈Z〉, which is equivalent to the local category LZ , is well generated. �

We conclude this subsection with a lemma with four useful well-known facts.
Recall that a ring object in a tensor triangulated category is an object R with an
associative multiplication map µ : R ∧ R → R and a unit ι : 1 → R, making the
evident diagrams commute. If R is a ring object, then an R-module object is an
object M with a map m : R ∧M → M along with evident commutative diagrams.
Note that R ∧X is an R-module object for every X . A skew field object is a ring
object such that every R-module object is free, i.e. isomorphic to a coproduct of
suspensions of R [HPS97, Def. 3.7.1].

Lemma 2.5. Let C be a tensor triangulated category with loc(1) = C, and L : C → C

a localization.

(1) Every localizing subcategory S of C is tensor-closed; that is, given X ∈ S

and Y ∈ C, X ∧ Y ∈ S.
(2) For all X and Y in C, L(X ∧ Y ) = L(LX ∧ LY ).
(3) Considered as a functor from C to L, L also preserves ring objects and

module objects.
(4) If R is a ring object and M is an R-module object (in particular, if M = R),

then M is R-local.

Proof. For (1), note that Y ∈ loc(1) = C, so X ∧ Y ∈ loc(X ∧ 1) = loc(X) ⊆ S.
For (2), consider the exact triangle X ∧ CY → X ∧ Y → X ∧ LY . Since

CY is L-acyclic and these form a localizing subcategory, L(X ∧ CY ) = 0, so
L(X ∧ Y ) = L(X ∧ LY ). Using the same reasoning with the triangle CX ∧ LY →
X ∧ LY → LX ∧ LY , the result follows.

If R ∈ C, is a ring object, then L(µ) : L(R∧R) = L(LR∧LR) = LR∧LLR → LR,
and all the localized diagrams commute. Similarly for module objects.

Part (4) is [Rav84, Prop. 1.17(a)]. �

2.3. Background on Bousfield lattices. Every well generated tensor triangu-
lated category, and hence every localized category of spectra, has a set (rather than
a proper class) of Bousfield classes [IK13, Thm. 3.1]. This was also recently shown
for every tensor triangulated category with a combinatorial model [CGR14]. This
set is called the Bousfield lattice BL(T) and has a lattice structure which we now
recall. Refer to [HP99,Wol13] for more details.

The partial ordering is given by reverse inclusion: we say 〈X〉 ≤ 〈Y 〉 when W ∧
Y = 0 =⇒ W ∧X = 0. It is also helpful to remember that, unwinding definitions,
〈X〉 ≤ 〈Y 〉 precisely when every LX-local object is also LY -local. Clearly 〈0〉 is
the minimum and 〈1〉 is the maximum class. The join of any set of classes is∨

i∈I〈Xi〉 = 〈
∐

i∈I Xi〉, and the meet is defined to be the join of all lower bounds.
The smash product induces an operation on Bousfield classes, where 〈X〉∧〈Y 〉 =

〈X∧Y 〉. This is a lower bound, but in general not the meet. However, if we restrict
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to the subposet DL = {〈W 〉 | 〈W ∧W 〉 = 〈W 〉}, then the meet and smash agree.
Since coproducts distribute across the smash product, DL is a distributive lattice.

We say a class 〈X〉 is complemented if there exists a class 〈Xc〉 such that 〈X〉 ∧
〈Xc〉 = 〈0〉 and 〈X〉 ∨ 〈Xc〉 = 〈1〉. The collection of complemented classes is
denoted BA. For example, every smashing localization L : T → T gives a pair of
complemented classes, namely 〈C1〉 and 〈L1〉. Because every complemented class
is also in DL, BA is a Boolean algebra.

Proposition 2.6. Let T be as in Definition 2.1, and LZ : T → T a localization
functor as in Notation 2.2. Then LZ induces a well-defined order-preserving map
of lattices BL(T) → BL(LZ), where 〈X〉 7→ 〈LZX〉. This map is surjective, and
sends DL(T) onto DL(LZ) and BA(T) onto BA(LZ).

Proof. Most of this was proved in Lemma 3.1 of [Wol13]. For 〈X〉 ∈ DL(T), using
Lemma 3.10 we get

〈LX〉 = 〈L(X ∧X)〉 = 〈L(LX ∧ LX)〉 = 〈LX ∧L LX〉.

Likewise, one can check that for 〈X〉 ∈ BA(T), the class 〈LX〉 ∈ BL(L) is comple-
mented by 〈L(Xc)〉, keeping in mind that 〈L1〉 is the top class in BL(L). �

Corollary 2.7. For any Z ∈ S, we have |BL(LZ)| ≤ 22
ℵ0

.

Proof. |BL(LZ)| ≤ |BL(S)| ≤ 22
ℵ0

, where the second inequality was proved
in [Ohk89]. �

Lemma 2.8. Let T be as in Definition 2.1, and X and Y objects of T. Then
〈X〉 ≤ 〈Y 〉 if and only if LX = LXLY = LY LX and in this case the following
diagram commutes (also with BL replaced by DL or BA).

BL(T)

LY

zzzztt
tt
tt
tt
t

LX

$$ $$❏
❏❏

❏❏
❏❏

❏❏

BL(LY )
LX

// // BL(LX)

Proof. The first equivalence is straightforward; it follows from [Rav84, Prop. 1.22]
and the observation that 〈X〉 ≤ 〈Y 〉 precisely when all LX-locals are LY -locals.
The last remark follows from Proposition 2.6. �

Here we mention one object-level application of the Bousfield lattice calculations
of Sections 5 and 6. Call an object X square-zero if it is nonzero, but X ∧X = 0.
For example, I ∧ I = 0 in S.

Proposition 2.9. There are no square-zero objects in the harmonic, E(n)-, K(n)-,
HFp-, or I-local categories.

Proof. In Corollary 2.8 of [Wol13], we show that in a well generated tensor tri-
angulated category, there are no square-zero objects if and only if BA = DL = BL.
The claim then follows from Corollaries 5.4 and 5.10 and Propositions 6.2 and 6.6.
�
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2.4. Background on spectra. We quickly review some relevant background on
the stable homotopy category. See [Rav92,Hov95,MS95,Rav93] for more details.
Fix a prime p and let S denote the p-local stable homotopy category of spectra. Let
S0 denote the sphere spectrum. The finite spectra F are the compact objects of S,
and F = th(S0). The structure of F is determined by the Morava K-theories K(i).
For each i ≥ 0, K(i) is a skew field object in S, such that K(i) ∧K(j) = 0 when
i 6= j. If X is a finite spectrum and K(j)∧X = 0, then K(j − 1)∧X = 0. We say
a finite spectrum X is type n if n is the smallest integer such that K(n) ∧X 6= 0.
Define Cn = 〈K(n− 1)〉 ∩ F . Then every thick subcategory of F is Cn for some n.
It follows that any two spectra of type n generate the same thick subcategory, and
hence Bousfield class; let F (n) denote a generic type n spectrum.

Given a type n spectrum X , there is a vn self-map f : ΣdX → X with [S0,K(n)∧
f ]i an isomorphism for all i and [S0,K(m)∧f ]j = 0 for all j and m 6= n. We define
f−1X to be the telescope, i.e. sequential colimit, i.e. homotopy colimit, of the
diagram X → Σ−dX → · · · . By the periodicity theorem, any choice of vn self-map
f yields an isomorphic telescope. The telescopes of different type n spectra are
Bousfield equivalent; denote this class by 〈T (n)〉.

As mentioned above, localization away from a finite spectrum F (n+1) exists, and
is smashing. This localization functor is denoted Lf

n, and is the same as homological
localization at T (0) ∨ · · · ∨ T (n).

Let E(n) denote the Johnson-Wilson spectrum; this is a ring spectrum with
〈E(n)〉 = 〈K(0)∨ · · · ∨K(n)〉. Define Ln : S → S to be homological localization at
E(n). A deep theorem of Ravenel [Rav92, Thm. 7.5.6] shows that Ln is smashing
for all n. The Lf

n and Ln are the only known smashing localization functors on S.
The Lf

n-acyclics are loc(F (n+1)) = loc(Cn+1) = loc(〈K(n)〉∩F) = loc(〈E(n)〉∩
F). The Ln-acyclics are 〈E(n)〉 = loc(〈E(n)〉). Thus every Lf

n-acyclic is Ln-acyclic,
and we have 〈K(0) ∨ · · · ∨ K(n)〉 ≤ 〈T (0) ∨ · · · ∨ T (n)〉 for all n. It follows that
there is a natural map Lf

n → Ln.
For convenience later, we collect some calculations in S.

Lemma 2.10. In BL(S) we have the following.

(1) 〈F (m)〉 ≤ 〈F (n)〉 if and only if m ≥ n. For all n and m, 〈F (m)∧F (n)〉 6=
〈0〉. Furthermore, 〈F (n) ∧ F (n)〉 = 〈F (n)〉 for all n.

(2) 〈F (m) ∧ T (n)〉 = 〈0〉 when m > n, and 〈F (m) ∧ T (n)〉 = 〈T (n)〉 when
m ≤ n.

(3) 〈T (m) ∧ T (n)〉 = 〈0〉 when m 6= n, and 〈T (n) ∧ T (n)〉 = 〈T (n)〉.
(4) 〈F (m)∧K(n)〉 = 〈0〉 when m > n, and 〈K(n)〉 = 〈F (m)∧K(n)〉 ≤ 〈F (m)〉

when m ≤ n.
(5) 〈T (m)∧K(n)〉 = 〈0〉 when m 6= n, and 〈K(n)〉 = 〈T (n)∧K(n)〉 ≤ 〈T (n)〉.
(6) 〈K(m) ∧K(n)〉 = 〈0〉 when m 6= n, and 〈K(n) ∧K(n)〉 = 〈K(n)〉.

Proof. Part (1) is Theorem 14 of [HS98], along with the observation that 〈F (n)〉

is complemented by 〈Lf
n−1S

0〉 and hence is in DL.
Part (2) is in [Rav93, 2.8(i)], [MS95, 6.2], and [HP99, Sect. 5]. Part (3) is also

in [HP99, Sect. 5].
Part (4) follows from the definition of type m spectra. Since each K(i) is a skew

field object, F (m) ∧K(i) 6= 〈0〉 implies this K(i)-module object F (m) ∧K(i) is a
wedge of suspensions of K(i).
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From the periodicity theorem, T (m) has nonzero K(m) homology, so T (m) ∧
K(m) 6= 0. The rest of Part (5) is in [Rav92, Prop. A.2.13]. Finally, Part (6) is
well known. �

3. Local versions of the telescope conjecture

In this section, let L = LZ : S → S be a localization functor for some Z ∈ S,
and let L = LZ denote the category of L-locals. First we state the various versions
of the original telescope conjecture on S.

Definition 3.1. Fix an integer n ≥ 0. On S, we have the following versions of the
telescope conjecture.

TC1n : 〈T (n)〉 = 〈K(n)〉.

TC2n : Lf
nX

∼
→ LnX for all X.

TC3n : If X is type n and f is a vn self-map, then LnX ∼= f−1X.
GSC : Every smashing localization is generated by a set of compact objects.
SDGSC : Every smashing localization is generated by a set of

strongly dualizable objects.

Theorem 3.2. On the category S we have TC1n ⇔ TC3n.
Also, TC2n holds if and only if TC1i holds for all i ≤ n.
Given TC2n−1 and TC1n, then TC2n holds.
Furthermore, GSC ⇔ SDGSC, and this implies TC2n for all n.

Remark 3.3. Note that if we quantify over all n, the first three versions of the
telescope conjecture are equivalent. That is,

TC1n for all n ⇔ TC2n for all n ⇔ TC3n for all n.

Remark 3.4. TC2n holds if and only if Lf
nS

0 ∼
→ LnS

0. Indeed, since both Lf
n and Ln

are smashing, the subcategory of objects W such that Lf
nW

∼
→ LnW is localizing.

Thus if it contains S0, it contains loc(S0) = S.

Proof. First we show the equivalence of TC1n and TC3n. This is also sketched
in [MRS01, 1.13]. For any type n spectrum Y , th(Y ) = th(F (n)) and so we have
th(LnY ) = th(LnF (n)), and 〈LnY 〉 = 〈LnF (n)〉. A construction in [Rav92, 8.3]
gives a type n spectrum Y with LnY ∈ th(K(n)). Thus 〈LnY 〉 ≤ 〈K(n)〉, and
0 6= 〈LnF (n)〉 = 〈K(n)〉. Suppose TC3n holds. Then 〈LnY 〉 = 〈f−1Y 〉 = 〈T (n)〉,
and so 〈T (n)〉 = 〈K(n)〉.

If X is type n and f is a vn self-map, then [MS95, Prop. 3.2] implies that Lf
nX

∼=
LT (n)X ∼= f−1X . Thus assuming TC1n, we have LK(n)X ∼= f−1X , and to prove
TC3n it suffices to show that LnX ∼= LK(n)X . This is known (see e.g. [Hov95]),
but we will give a proof that extends well to the localized setting. Since 〈K(n)〉 ≤
〈E(n)〉, localization at K(n) gives a map LnX → LK(n)X . It suffices to show that
this is an Ln-equivalence. The fiber is K(n) acyclic, so LnX ∧K(n) → LK(n)X ∧
K(n) is an isomorphism. Consider i < n. The triangle CnX ∧K(i) → X ∧K(i) →
LnX ∧K(i) shows that LnX ∧K(i) is zero, because X is type n and CnX is K(i)
acyclic. Lemma 3.3.1 in [HPS97] states that LW = LS0 ∧W for any localization
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L and strongly dualizable W . Since every finite spectrum is strongly dualizable,
LK(n)X ∧K(i) = LK(n)S

0 ∧X ∧K(i) = 0. Thus LnX ∧K(i) → LK(n)X ∧K(i) is
an isomorphism for all i ≤ n, and hence LnX → LK(n)X is an Ln-equivalence.

For the second statement, note that TC2n is equivalent to the statement 〈T (0)∨
· · · ∨ T (n)〉 = 〈K(0) ∨ · · · ∨K(n)〉. Smashing this with 〈T (i)〉, for 0 ≤ i ≤ n, and
using Lemma 2.10, yields TC1i for each i. The third statement is also clear from
this observation.

Finally, GSC ⇔ SDGSC because objects in S are compact if and only if they are
strongly dualizable. Given GSC, consider Ln. The GSC would imply that the Ln-
acyclics are loc(〈E(n)〉 ∩F). As observed earlier, this is the same as loc(F (n+1)),
which are the Lf

n-acyclics. Therefore we would have Lf
n
∼= Ln. �

The SDGSC is new, and we will discuss it first. As mentioned in the above
proof, in S compactness is equivalent to strong dualizability. It is well known that
localization away from a set of compact objects is smashing. The GSC is precisely
the statement that the converse holds. However, as we will show next, one only
needs strong dualizability to generate a smashing localization functor. We will state
our result in slightly more general terms.

Theorem 3.5. Let T be a well generated tensor triangulated category such that
loc(1) = T, as in Definition 2.1. Let A = {Bα} be a (possibly infinite) set of strongly
dualizable objects. Then there exists a smashing localization functor L : T → T

with Ker L = loc(A).

Proof. Let E = ∨αBα and note that loc(E) = loc(A). The category T is well gen-
erated by hypothesis. The localizing subcategory S = loc(E) is also well generated,
by [IK13, Rmk. 2.2], and is tensor-closed by Lemma 2.5.

By [IK13, Prop. 2.1] there exists a localization functor L : T → T with Ker L = S.
We will show that L is a smashing localization.

First we claim that the L-locals are tensor-closed. For any Y ∈ T, we have the
following.

Y is L-local ⇔ [W,Y ]n = 0 for all W ∈ S and all n ∈ Z

⇔ [E, Y ]n =
∏
[Bα, Y ]n = 0 for all n ∈ Z

⇔ [Bα, Y ]n = 0 for all α and n ∈ Z

⇔ DBα ∧ Y = 0 for all α

The second equivalence follows from the fact that {X | [X,Y ]n = 0 for all n ∈ Z}
is a localizing subcategory containing E, hence all of S. The final equivalence uses
the fact that the Bα are strongly dualizable.

Now suppose Y is L-local and X is arbitrary. Then DBα ∧ Y = 0 for all α, so
DBα∧Y ∧X = 0 for all α, and thus Y ∧X is L-local. This shows that the L-locals
are tensor-closed.

Consider the localization triangle C1→ 1→ L1, where L1 is L-local and C1 ∈ S.
For arbitrary X ∈ T, tensoring gives an exact triangle

C1∧X → X → L1∧X.

The object L1∧X is L-local, since the locals are tensor-closed. Likewise, C1∧X ∈
S, since S is tensor-closed and so L(C1 ∧ X) = 0. Therefore X → L1 ∧ X is an
L-equivalence from X to an L-local object, and it follows that LX ∼= L1∧X . This
shows that L is a smashing localization. �
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In the stable homotopy category, and more generally whenever 1 ∈ T is compact,
this gives nothing new; by [HPS97, Thm. 2.1.3(d)] compact and strongly dualizable
are equivalent. Consider, however, the harmonic category, which has no nonzero
compact objects. In Section 4 we classify all smashing localizations on the harmonic
category; they are indexed by N. Thus the GSC fails in the harmonic category, but
as we show in Theorem 4.4, the SDGSC holds. In fact, in the following sections we
will give several examples of categories where the GSC fails but the SDGSC holds.

On the other hand, we don’t expect the SDGSC to hold in complete generality,
since Keller’s counterexample [Kel94] to the GSC is also a counterexample to the
SDGSC; in the derived category of a ring R, the unit R is compact and strongly
dualizable, so the GSC and SDGSC are equivalent.

The GSC and SDGSC make sense in any localized category, but TC1n, TC2n, and
TC3n may not, since T (n) and K(n) may not be objects in L. Instead we make the
following definitions.

Definition 3.6. Let L : S → S be a localization, and L the category of L-locals.

(1) Let lfn : L → L denote localization at 〈LT (0) ∨ LT (1) ∨ · · · ∨ LT (n)〉.
(2) Let ln : L → L denote localization at 〈LK(0) ∨ LK(1) ∨ · · · ∨ LK(n)〉.

Before stating and proving a local version of Theorem 3.2, we establish some
results about lfn and ln. First we make an observation about calculations in BL(L).

Lemma 3.7. All the calculations in Lemma 2.10 are valid in BL(L) if we replace
F (n), T (n), and K(n) with LF (n), LT (n), and LK(n).

Proof. This follows from Theorem 2.3 and the statements in Lemma 2.10. �

Proposition 3.8. lfn is localization away from LF (n+ 1), and hence is smashing.

Proof. By Theorem 3.5 we know that there is some smashing localization functor
l : L → L that is localization away from LF (n + 1); we wish to show l = lfn . Let
1 = LS0 for simplicity of notation, and let c denote the colocalization corresponding
to l . We claim that the l -acyclics are precisely loc(c1). Clearly c1 is l -acyclic, and
these are a localizing subcategory, so loc(c1) ⊆ {l -acyclics}. On the other hand,
suppose W is l -acyclic. Because l is smashing, LW = W ∧ l1 = 0, so W = W ∧ c1.
Then since W ∈ loc(1) = L, we have W = W ∧ c1 ∈ loc(1∧ c1) = loc(c1), proving
the claim.

By definition, the l -acyclics are also given by loc(LF (n+1)). Therefore 〈LF (n+
1)〉 = 〈c1〉.

The class 〈F (n + 1)〉 is complemented by 〈T (0) ∨ · · · ∨ T (n)〉 in BL(S) [HP99,
Sect. 5], so 〈LF (n + 1)〉 is complemented by 〈LT (0) ∨ · · · ∨ LT (n)〉 in BL(L). At
the same time, 〈c1〉 is complemented by 〈l1〉, and complements are unique. We
conclude that {l -acylics} = 〈l1〉 = 〈LT (0) ∨ · · · ∨ LT (n)〉. Since l and lfn are two
localizations on L with the same acyclics, they are equal. �

Lemma 3.9. If L is smashing, then lfn = LLf
n = Lf

nL and ln = LLn = LnL, and
both are smashing.

Proof. Smashing localization functors always commute, and compose to give a
smashing localization. The functor LLn : S → S, sending X 7→ L(LnS

0 ∧ X) =
LS0 ∧ LnS

0 ∧ X is a smashing localization. Since LLn-locals are L-local, it also
gives a smashing localization on L. The acyclics of this functor are 〈LLnS

0〉 in
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BL(L), which is 〈LK(0) ∨ · · · ∨ LK(n)〉. Thus LLn and ln are localizations on L
with the same acyclics, hence isomorphic. The same proof works for lfn = LLf

n. �

In S, for a type n finite spectrum X with a vn map f : ΣdX → X and telescope
f−1X , it is known [MS95, Prop. 3.2] that Lf

nX
∼= LT (n)X ∼= f−1X . The following

proposition shows that the local version of this result holds as well.

Lemma 3.10. Let L : S → S be a localization, and lfn , X and f−1X as above.
Then

lfn (LX) ∼= LLT (n)(LX) ∼= L(f−1X).

Proof. The proof parallels the [MS95] result, one must only check that every-
thing works when localized. If LLT (n)(LX) ∼= L(f−1X) holds for a single type n
spectrum, then it holds for all type n spectra. So without loss of generality, we
can choose X to be a type n spectrum that is a ring object in S. Then for any
vn self-map f , the telescope f−1X is also a ring object [MS95, Lemma 2.2]. By
Lemma 2.5, L(f−1X) is a ring object in L, and hence is local with respect to itself.

Lemma 2.2 in [MS95] shows that X ∧ f−1X ∼= f−1X ∧ f−1X in S, so LX ∧L

L(f−1X) ∼= L(f−1X)∧L L(f−1X) in L and the canonical map LX → L(f−1X) is
an L(f−1X)-equivalence. It follows that LLT (n)(LX) ∼= L(f−1X).

Since 〈LT (n)〉 ≤ 〈LT (0) ∨ · · · ∨ LT (n)〉, L(f−1X) is lfn -local. One then uses
Lemma 3.7 to see that LX → L(f−1X) is a lfn -equivalence, and so lfn (LX) =
lfn (L(f

−1X)) = L(f−1X). �

Definition 3.11. Let L : S → S be a localization, and consider the category L of lo-
cals. Fix an n ≥ 0. We have the following versions of the telescope conjecture on L.

LTC1n : 〈LT (n)〉 = 〈LK(n)〉.

LTC2n : lfnX
∼
→ lnX for all X.

LTC3n : If X ∈ S is type n and f is a vn self-map, then ln(LX) ∼= L(f−1X).
GSC : Every smashing localization is generated by a set of compact objects.
SDGSC : Every smashing localization is generated by a set of

strongly dualizable objects.

Theorem 3.12. On the category L we have LTC1n ⇒ LTC3n.
Also, LTC2n holds if and only if LTC1i holds for all i ≤ n.
Given LTC2n−1 and LTC1n, then LTC2n holds.

Proof. Note that LTC2n is equivalent to the statement 〈LT (0) ∨ · · · ∨ LT (n)〉 =
〈LK(0) ∨ · · · ∨ LK(n)〉, so the last two statements are clear. We will show that
LTC1n ⇒ LTC3n, by mimicking the proof in Theorem 3.2.

If X is type n and f is a vn self-map, Lemma 3.10 shows that lfn (LX) ∼=
LLT (n)(LX) ∼= L(f−1X). Then LTC1n implies LLK(n)LX ∼= L(f−1X). So it
suffices to show that ln(LX) = LLK(n)LX . We must show that the map LLK(n) :
ln(LX) → LLK(n)LX is an ln-equivalence. The same reasoning as in Theorem 3.2,
along with the computations of Lemma 3.7 and some definition unwinding, gives us
that ln(LX)∧LK(i) → LLK(n)LX ∧LK(i) is an equivalence for all i ≤ n; we only
need to notice that Lemma 3.3.1 in [HPS97] applies to strongly dualizable objects,
and LX is strongly dualizable. �
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Theorem 3.13. Furthermore, if L : S → S is a smashing localization, then on the
category L of locals we have LTC1n ⇐ LTC3n, and

GSC ⇔ SDGSC ⇒ LTC2n for all n.

Remark 3.14. In this case, LTC2n is equivalent to lfn (LS
0)

∼
→ ln(LS

0), since by
Lemma 3.9 both lfn and ln are smashing, so the argument in Remark 3.4 applies.

Proof. By [HPS97, Thm. 2.1.3(d)], the compact objects and strongly dualizable
objects in L coincide. Thus GSC ⇔ SDGSC, and this implies LTC2n just as in
Theorem 3.2.

Suppose X has type n and LTC3n holds. As in the proof of Theorem 3.2,
〈LnF (n)〉 = 〈K(n)〉 in BL(S), so 〈LLnLF (n)〉 = 〈LK(n)〉 in BL(L). By Lemma 3.9,
we have 〈lnLF (n)〉 = 〈LK(n)〉. Then LTC3n implies that 〈LT (n)〉 = 〈L(f−1X〉 =
〈ln(LX)〉 = 〈lnLF (n)〉, so LTC1n holds. �

Question 3.15. Is ln : L → L always a smashing localization?

This is the case in all the local categories investigated in this paper, whether or
not L : S → S is a smashing localization. If one could show ln is always smashing,
then most likely on L one would have SDGSC =⇒ LTC2n∀n.

We would of course like to know if and when information on localized telescope
conjectures can help with those in the original category S, where all versions remain
open.

Proposition 3.16. Let L : S → S be a localization, with localized category L.

(1) If TC1n holds on S, then LTC1n holds on L.
(2) If TC2n holds on S, then LTC2n holds on L.
(3) If TC3n holds on S, then LTC3n holds on L.

Furthermore, if L is a smashing localization then we have the following.

(4) If GSC holds on S, then GSC holds on L.
(5) If SDGSC holds on S, then SDGSC holds on L.

Proof. Part (1) follows immediately from Proposition 2.6. So does Part (2), since
TC2n is equivalent to the statement 〈T (0) ∨ · · · ∨ T (n)〉 = 〈K(0) ∨ · · · ∨ K(n)〉
and similarly for LTC2n. From this and Theorems 3.2 and 3.12 we have TC3n ⇔
TC1n ⇒ LTC1n ⇒ LTC3n.

Now suppose L is smashing, and the GSC holds on S. Let l : L → L be a
smashing localization. Thus l is defined by l(LY ) = l(LS0)∧LLY = lS0∧LS0∧Y .
We can therefore extend l to be a smashing localization on all of S, with X 7→
lS0 ∧ LS0 ∧X = lLS0 ∧X . Since the GSC holds on S by assumption, the acyclics
of this functor are 〈lLS0〉 = loc(A), for some set of compact objects A in S. Here
〈lLS0〉 refers to the Bousfield class in BL(S).

We must show that 〈lLS0〉 in BL(L) is generated by a set of objects that
are compact in L. Note that 〈lLS0〉 in BL(L) is {LW | LW ∧L lLS0 = 0} =
{LW | LW ∧S lLS

0 = 0} = 〈lLS0〉∩L, where the latter 〈lLS0〉 is in BL(S). There-
fore 〈lLS0〉 in BL(L) is loc(A) ∩ L. We claim that this is loc(L(A)). Since L sends
compacts to compacts, this will show that l is generated by a set of compacts.

If X ∈ loc(A), then LX ∈ loc(L(A)). If X ∈ L in addition, then X ∼= LX ∈
loc(L(A)). For the other inclusion, note that the intersection of two localizing
subcategories is a localizing subcategory, and L is a localizing subcategory of S
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because L is smashing. For Y ∈ A, LY is in L, and LY = LS0 ∧ Y ∈ loc(Y ) ⊆
loc(A). Therefore L(A) ⊆ loc(A) ∩ L, and loc(L(A)) = loc(A) ∩ L.

Part (5) follows immediately, since if L is smashing then GSC ⇔ SDGSC in both
S and L. �

Balmer and Favi [BF11, Prop. 4.4] have also recently proved Part (4) in the
slightly more general setting of a smashing localization on a unital algebraic stable
homotopy category; the above proof would apply there as well. One would like to
prove Part (5) without the assumption that L is smashing, but it’s not clear if this
is possible.

Letting L = LZ , for Z =
∨

i≥0 K(i), E(n), K(n), BP , HFp, or I provides inter-
esting examples of categories L on which to investigate these telescope conjectures.
Furthermore, LTC1n suggests the relevance of Bousfield lattices to understanding
these questions. In the remaining sections, we focus on specific localized categories.

4. The Harmonic category

Let Q =
∨

i≥0 K(i), and L = LQ : S → S, and consider the harmonic categoryH
of L-locals. Harmonic localization is not smashing. An object is called harmonic if
it is L-local, and dissonant if it is L-acyclic. For example, finite spectra, suspension
spectra, finite torsion spectra, and BP are known to be harmonic [Hov95,Rav84].
On the other hand, I and HFp are dissonant.

In order to answer the telescope conjectures in H, we will first calculate the
Bousfield lattice of H. In this section all smash products are in H, unless otherwise
noted. Given any set P , let 2P denote the power set of P .

Definition 4.1. Given X ∈ H, define the support of X to be

supp(X) = {i | X ∧K(i) 6= 0} ⊆ N.

The following result and proof was pointed out to us by Jon Beardsley.

Proposition 4.2. The Bousfield lattice of H is 2N.

Proof. Each K(n) is a ring object, hence K(n)-local by Lemma 2.5. Because
〈K(n)〉 ≤ 〈Q〉, K(n)-locals are harmonic, thus each K(n) is harmonic. The argu-
ment hinges on the fact that K(n) is a skew field object in H: for X = LX in H, if
X ∧K(n) 6= 0 then X ∧K(n) = L(X ∧S K(n)) so X ∧S K(n) 6= 0, and X ∧S K(n)
must be a nonempty wedge of suspensions of K(n)’s. Thus

X∧K(n) = L(X∧SK(n)) = L(∨ΣiK(n)) = L(∨ΣiLK(n)) =
∐

L

ΣiLK(n) =
∐

L

ΣiK(n).

It follows that LX ∧K(n) = 0 if and only if LX ∧S K(n) = 0. Furthermore, if
LX ∧K(n) 6= 0, then 〈LX ∧K(n)〉 = 〈K(n)〉, where these are Bousfield classes in
BL(H).

By the definition of L, for any W ∈ S, if W ∧S K(n) = 0 for all n, then LW = 0.
Combining this with the above observation, we get that a local object W = LW
has W ∧K(n) = 0 in H for all n if and only if W = 0.
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Therefore, for any X,Y ∈ H, we have

Y ∧X = 0 ⇔ Y ∧X ∧K(n) = 0 ∀n ⇔ Y ∧K(n) = 0 for all n ∈ supp(X).

We conclude that there is a lattice isomorphism F : BL(H) → 2N, given by the
following.

〈X〉 =
∨

supp(X)

〈K(i)〉 7→ supp(X),

N ⊆ N 7→
∨

i∈N

〈K(i)〉.

�

Theorem 4.3. On H, for all n ≥ 0 we have that LTC1n, LTC2n, and LTC3n hold.

Proof. By Lemmas 2.10 and 3.7, LT (n) and LK(n) = K(n) have the same support.
The above theorem then implies that 〈LT (n)〉 = 〈LK(n)〉. Thus LTC1n holds for
all n, and the claim follows from Theorem 3.12. �

Next, we classify all smashing localizations on H, and show that the GSC fails
but the SDGSC holds. The proof is based on that of [HS99, Thm. 6.14], which
classifies smashing localizations in the E(n)-local category.

Theorem 4.4. If L′ : H → H is a smashing localization functor, then L′ = lfn for
some n ≥ 0, or L′ = 0 or L′ = id. Therefore the GSC fails but the SDGSC holds on
H.

Proof. Let L′ : H → H be a smashing localization functor, and let 1 = LS0 be
the unit in H. The acyclics of L′ are given by 〈L′1〉. From Proposition 4.2, 〈L′1〉 is
equal to the wedge of 〈K(i)〉 for all i ∈ supp(L′1). If supp(L′1) = ∅ then 〈L′1〉 = 〈0〉
and L′ = 0.

Assume now that supp(L′1) is not empty, and take j ∈ supp(L′1). We will show
that 〈L′1〉 ≥ 〈K(0) ∨ · · · ∨K(j)〉. It follows that either 〈L′1〉 =

∨
i≥0〈K(i)〉 = 〈1〉

and L′ = id, or L′ = ln = lfn for n = max(supp(L′1)).
Since 〈K(j)〉 ≤ 〈L′1〉, from Lemma 2.8 we have LK(j)L

′ = L′LK(j) = LK(j).
Therefore 〈LK(j)1〉 = 〈L′1∧ LK(j)1〉 ≤ 〈L′1〉. Proposition 5.3 of [HS99] shows that

in S, LK(j)S
0 ∧S K(i) is nonzero for 0 ≤ i ≤ j and zero for i > j. Note that

LK(j)S
0 = LK(j)LS

0 = LK(j)1, and as remarked in the proof of Proposition 4.2,
LX ∧ K(i) = 0 if and only if LX ∧S K(i) = 0. Therefore in BL(H) we have
〈LK(j)1〉 = 〈K(0) ∨ · · · ∨K(j)〉, and so 〈L′1〉 ≥ 〈K(0) ∨ · · · ∨K(j)〉 as desired.

Each lfn is localization away from LF (n+1) by Proposition 3.8, which is strongly
dualizable by Theorem 2.3. The identity is localization away from zero, and the
zero functor is localization away from LS0; these are both strongly dualizable.
Therefore the SDGSC holds. On the other hand, Corollary B.13 in [HS99] shows
that there are no nonzero compact objects in H, so the GSC fails. �

Question 4.5. Classify localizing subcategories of H.

It seems likely that every localizing subcategory of H is a Bousfield class, and
so these are in bijection with 2N, but we have been unable to prove this.
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5. The E(n)- and K(n)- local categories

5.1. The E(n)-local category. Recall that E(n) has 〈E(n)〉 = 〈K(0) ∨ K(1) ∨
· · ·∨K(n)〉. In this section, fix L = Ln = LE(n) : S → S and let Ln denote the local
category. The functor Ln is smashing, and so by Theorem 2.1 each LF (i) is compact
in Ln. Hovey and Strickland [HS99] have studied Ln in detail, and determine the
localizing subcategories, smashing localizations, and Bousfield lattice of Ln. We
begin by recalling these results.

Lemma 5.1. For 0 ≤ i ≤ n, we have LK(i) = K(i), and for i > n we have
LK(i) = 0.

Proof. This follows from 〈E(n)〉 = 〈K(0) ∨K(1) ∨ · · · ∨K(n)〉. �

Theorem 5.2. [HS99, Thm. 6.14] The lattice of localizing subcategories of Ln,
ordered by inclusion, is in bijection with the lattice of subsets of the set {0, 1, ..., n},
where a localizing subcategory S corresponds to

{i | K(i) ∈ S}.

Corollary 5.3. Every localizing subcategory of Ln is a Bousfield class, in particular
a localizing subcategory S is the Bousfield class

∨
〈K(j) | K(j) /∈ S, 0 ≤ j ≤ n〉.

Corollary 5.4. For every n ≥ 0, there is a lattice isomorphism

fn : BL(Ln)
∼
−→ 2{0,1,...,n}.

Proof. The isomorphism is given by

〈X〉 =
∨

X∧K(i) 6=0

〈K(i)〉 7→ {i | X ∧K(i) 6= 0},

N ⊆ {0, 1, ..., n} 7→
∨

i∈N

〈K(i)〉.

�

Theorem 5.5. [HS99, Cor. 6.10] If L′ : Ln → Ln is a smashing localization, then

L′ = Li = Lf
i for some 0 ≤ i ≤ n or L′ = 0. Thus the GSC holds on Ln.

Corollary 5.6. On Ln, all of LTC1i, LTC2i, LTC3i hold for all i, and GSC and
SDGSC also hold.

Proof. This follows from the previous Theorem, and Theorem 3.13. Note that for

i > n, we have LT (i) = 0 = LK(i) by Lemma 2.10, and so li = ln = lfn = lfi . �

Recall that there is a natural map LnX → Ln−1X for all X in S and n, and by
Proposition 2.6 this induces a surjective lattice map BL(Ln) → BL(Ln−1), and an
inverse system of lattice maps.

· · · → BL(Ln) → BL(Ln−1) → · · · → BL(L1) → BL(L0)

Proposition 5.7. The lattice isomorphisms F and fn from Proposition 4.2 and
Corollary 5.4 realize BL(H) as the inverse limit of the maps BL(Ln) → BL(Ln−1).
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Proof. From Lemma 2.8, and the facts that LQK(i) = K(i) for all i, and LnK(i) =
K(i) for i ≤ n and LnK(i) = 0 for i > n, we get the following diagram for all n.
The map 2{0,1,...,n} → 2{0,1,...,n−1} is induced by sending m 7→ m for m < n but
n 7→ 0, and the maps 2N → 2{0,1,...,i} are defined similarly.

BL(H)

yyyyss
ss
ss
ss
ss

����

oo

F
// 2N

xxxx♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

����

BL(Ln)

%% %%❑
❑❑

❑❑
❑❑

❑❑
❑

oo

fn

// 2{0,1,...,n}

&& &&◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

BL(Ln−1) oo
fn−1

// 2{0,1,...,n−1}

�

5.2. The K(n)-local category. Although an incredibly complicated category in
its own right, the K(n)-local category is quite basic from the perspective of localiz-
ing subcategories, Bousfield lattices, and telescope conjectures. In this subsection,
let L = LK(n) : S → S be localization at K(n), and let Kn denote the category of
locals. Hovey and Strickland classify the localizing subcategories of Kn, and there
are not many of them.

Proposition 5.8. [HS99, Thm. 7.5] There are no nonzero proper localizing sub-
categories of Kn.

This Proposition implies that the Bousfield lattice of Kn is the two-element
lattice {〈0〉, 〈K(n)〉}. We will prove a slightly more general result, that will be used
again in Subsection 6.1.

Proposition 5.9. Consider a category T as in Definition 2.1, an object Z in T,
and localization LZ : T → T with localized category LZ .

(1) If Z is a ring object, then 〈LZZ〉 = 〈Z〉 is the maximum class in BL(LZ).
(2) If Z is a skew field object, then BL(LZ) is the two-element lattice {〈0〉, 〈Z〉}.

Proof. For (1), first note that Lemma 2.5 implies LZZ = Z. Consider 〈Z〉 in
BL(LZ). By definition, this is the collection of all W ∈ LZ with L(Z ∧T W ) = 0.
But Z ∧T W is a Z-module object in T, hence is LZ-local. The only object that is
both local and acyclic with respect to any localization is zero, so Z ∧T W = 0. But
this says that W is LZ-acyclic, hence zero in LZ . Therefore in BL(LZ) we have
〈Z〉 = {0}.

Now suppose Z is a skew field object in T. In particular, it is a ring object,
so 〈Z〉 is the maximum class in BL(LZ). Consider 〈LX〉 in BL(LZ), for arbitrary
X ∈ T. If X ∧T Z = 0, then LX = 0. Otherwise, X ∧T Z is a wedge of suspensions
of Z, so 〈Z〉 = 〈X ∧T Z〉 ≤ 〈X〉 in BL(T). Then 〈Z〉 = 〈LZZ〉 ≤ 〈LZX〉 in BL(LZ),
so 〈LZX〉 = 〈Z〉. �

Corollary 5.10. The Bousfield lattice of Kn is {〈0〉, 〈K(n)〉}.

Theorem 5.11. In Kn, all of LTC1i, LTC2i, LTC3i hold for all i, and GSC and
SDGSC also hold.
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Proof. In light of Theorem 3.12, we will show that LTC1i holds for all i. This
follows from Lemma 2.10: for i 6= n we have LT (i) = 0 = LK(i), but LT (n) 6= 0
so by the last corollary 〈LT (n)〉 = 〈K(n)〉 = 〈LK(n)〉.

There are exactly two smashing localizations on Kn. The identity functor is
smashing, and is localization away from 0, which is compact and strongly dualizable.
The zero functor is smashing, and is localization away from LS0, which is strongly
dualizable. It is not compact, but by Theorem 7.3 in [HS99], LF (n) is compact in
Kn and loc(LF (n)) = loc(LS0) = Kn. Therefore the zero functor is also generated
by a compact object. This shows that both the GSC and SDGSC hold. �

6. Other localized categories

In this section we will consider several other localized categories. In each case,
let LZ : S → S denote the localization functor that annihilates 〈Z〉, and let LZ

denote the category of LZ-locals.

6.1. The HFp-local category. The Eilenberg-MacLane spectrum HFp is a skew
field object in S; in fact, every skew field object in S is isomorphic to eitherHFp or a
K(n). Unlike the 〈K(n)〉, it is not complemented; for example, 〈I〉 ≤ 〈HFp〉 but I∧
HFp = 0. So 〈HFp〉 ∈ DL\BA. Hovey and Palmieri [HP99] have conjectured several
results about the collection of classes less than 〈HFp〉 in BL(S). The telescope
conjectures and Bousfield lattice of LHFp

are quite simple.

Theorem 6.1. In LHFp
, all of LTC1n, LTC2n, LTC3n hold for all n.

Proof. For all n, K(n)∧HFp = 0 and T (n)∧HFp = 0, by [HP99, p. 16]. Therefore
LK(n) = 0 = LT (n) and LTC1n holds for all n. Note that ln = lfn is the zero functor
for all n. �

In order to discuss the GSC and SDGSC in this category, we must classify the
smashing localizations. We will do this by using what we know about the Bousfield
lattice.

Proposition 6.2. The Bousfield lattice of LHFp
is the two-element lattice {〈0〉, 〈HFp〉}.

Proof. This follows immediately from Proposition 5.9 because HFp is a skew field
object in S. �

Recall that every smashing localization gives a pair of complemented classes in
BA ⊆ BL. Thus in LHFp

there are exactly two smashing localizations, the trivial
ones given by smashing with zero and with the unit.

Proposition 6.3. In LHFp
, the GSC fails but the SDGSC holds.

Proof. The identity functor is smashing, and is localization away from 0, which
is compact and strongly dualizable. By [HS99, Cor. B. 13], there are no nonzero
compact objects in LHFp

. So the zero functor, which is localization away from LS0,
is generated by a strongly dualizable object but not a compact one. �

One application of this Bousfield lattice calculation is to the question of clas-
sifying localizing subcategories. Every Bousfield class is a localizing subcategory.
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In Conjecture 9.1 of [HP99], Hovey and Palmieri conjecture the converse holds,
in the p-local stable homotopy category. The original conjecture is still open, but
the question can be asked in any well-generated tensor triangulated category. For
example, in a stratified category every localizing subcategory is a Bousfield class.
The question is interesting, since in general localizing subcategories are hard to
classify. In many cases, including S, it is not even known if there is a set of lo-
calizing subcategories. Recently Stevenson [Ste12] found the first counterexample,
in an algebraic setting: in the derived category of an absolutely flat ring that is
not semi-artinian, there are localizing subcategories that are not Bousfield classes.
Now we show that LHFp

provides another counterexample.

Proposition 6.4. In LHFp
there are localizing subcategories that are not Bousfield

classes.

Proof. The following counterexample was suggested to us by Mark Hovey. The
Bousfield lattice of LHFp

has only two elements: 〈0〉 = LHFp
and 1 = {0}. It suffices

to find a proper nonzero localizing subcategory in LHFp
.

Consider the Moore spectrum M(p), defined by the triangle S0 p
→ S0 → M(p);

this spectrum is HFp-local. Consider the following full subcategory in LHFp
.

A = {X ∈ LHFp
| [X,M(p)]n = 0 for all n ∈ Z}.

This is a localizing subcategory, called the cohomological Bousfield class of M(p)
and denoted 〈M(p)∗〉 in [Hov95b]. The spectrum HFp is a ring object, hence local
with respect to itself. As mentioned in Section 4, it is known that HFp is dissonant
and M(p) is harmonic, so [HFp,M(p)]n = 0 for all n, and HFp ∈ A. On the
other hand, the identity on M(p) is nonzero, so M(p) /∈ A. This shows that A is a
localizing subcategory that is not a Bousfield class.

Another example comes from Z = LHFp
(BP ). Clearly Z /∈ 〈Z∗〉. But BP is

also harmonic, so [HFp, BP ]n = 0 and [HFp, Z]n = 0 for all n, and HFp ∈ 〈Z∗〉.
Since Z ∈ 〈M(p)∗〉, we know that 〈M(p)∗〉 6= 〈Z∗〉. �

Both these counterexamples are cohomological Bousfield classes. It would be
interesting to find a localizing subcategory in LHFp

that is not a cohomological
Bousfield class, or show there are none. Also, it is not clear what, if anything, the
previous proposition might tell us about the original conjecture in S. For example,
as localizing subcategories in S, we have [Hov95b, 3.3] that 〈M(p)∗〉 = 〈I〉.

6.2. The I-local category. Recall by I we mean the Brown-Comenetz dual of the
sphere spectrum. It is a rare example of a nonzero spectrum that squares to zero.
Hovey and Palmieri [HP99, Lemma 7.8] conjecture that 〈I〉 is minimal in BL(S).

Theorem 6.5. On LI , for all n we have that LTC1n, LTC2n, and LTC3n all hold.

Proof. By Lemma 7.1(c) of [HP99], T (n)∧I = 0 for all n, so LT (n) = 0. SinceK(i)
is a BP -module, and BP ∧ I = 0 by [HS99, Cor. B.11], we also have K(n) ∧ I = 0
for all n. Therefore 〈LT (n)〉 = 〈0〉 = 〈LK(n)〉 for all n, and the rest follows from
Theorem 3.12. �

Proposition 6.6. The Bousfield lattice of LI is the two-element lattice {〈0〉, 〈LIS
0〉}.
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Proof. By [HP99, 7.1(c)], 〈I〉 < 〈HFp〉. Then Proposition 2.6 implies that there
is a surjective lattice map from BL(LHFp

) = {〈0〉, 〈HFp〉} onto BL(LI). Note that

by Lemma 2.8, 〈LIHFp〉 = 〈LILHFp
S0〉 = 〈LIS

0〉.
It remains to show that 〈LIS

0〉 6= 〈0〉. But any X in S with X ∧ I 6= 0 in S
will have LIX 6= 0 and LIX /∈ 〈LIS

0〉 in BL(LI); this is because LIX ∧LI
LIS

0 =
LI(LIX ∧S LIS

0) = LI(X ∧S S0) = LI(X). For example, F (n) ∧ I 6= 0 for all
n [HP99, 7.1(e)]. �

Corollary 6.7. In LI , the GSC fails but the SDGSC holds.

Proof. Corollary B.13 of [HS99] also shows that LI has no nonzero compacts, so
the proof is the same as for LHFp

. �

In [Hov95, Conj. 3.10], Hovey states the Dichotomy Conjecture: In S every
spectrum has either a finite local or a finite acyclic. In [HP99] the authors discuss
several equivalent formulations, and some implications. We briefly point out a
relationship between this conjecture and Proposition 6.6.

Proposition 6.8. If the Dichotomy Conjecture holds, then the cardinality of
BL(LI) is at most two.

Proof. Lemma 7.8 of [HP99] shows that if the Dichotomy Conjecture holds, then
〈I〉 is minimal among nonzero classes in BL(S). This is the case if and only if a〈I〉
is maximal among non-top classes in BL(S), where a(−) denotes the complementa-
tion operation first studied by Bousfield [Bou79b]. Let a〈I〉↑ denote the sublattice
{〈X〉 | 〈X〉 ≥ a〈I〉} ⊆ BL(S). In [Wol13, Prop. 3.2] we show that there is a surjec-
tive lattice map from a〈I〉↑ onto BL(LI). Thus, if the Dichotomy Conjecture holds,
a〈I〉↑ has cardinality two and BL(LI) has cardinality at most two. �

As for classifying localizing subcategories of LI , or at least perhaps finding a
proper nonzero localizing subcategory, we must get around the fact that so many
spectra are I-acyclic. We know that LF (n) 6= 0 for all n, however loc(LF (n)) is

the acyclics of lfn−1 : LI → LI and Theorem 6.5 shows that lfn = 0 for all n. Thus

loc(LF (n)) = loc(LS0) in LI for each n.

6.3. The BP -local category.

Theorem 6.9. On LBP , for all n we have that LTC1n, LTC2n, and LTC3n all hold.

Proof. We will show that LTC2n holds for all n, and the rest follows from The-
orem 3.12. Since each K(i) is a BP -module spectrum, 〈K(i)〉 ≤ 〈BP 〉, and since
K(i) is local with respect to itself this implies that K(i) is BP -local. Furthermore,
this implies 〈E(n)〉 ≤ 〈BP 〉, so from Lemma 2.8 Ln = LnL = LLn as functors on
S.

We claim that Ln : LBP → LBP , taking LY 7→ LnLY = LnY , is a smashing
localization functor on LBP . We have Ln(LY ) = L(LnY ) = L(LnS

0 ∧S Y ) =
L(LLnS

0 ∧S LY ) = L(LnLS
0 ∧S LY ) = (LnLS

0) ∧LBP
(LY ). This shows that on

LBP , the localization functor Ln is also given by smashing with the localization of
the unit, LnLS

0, and thus is smashing.
Since both Ln and ln are localization functors on LBP that annihilate 〈K(0) ∨

· · · ∨K(n)〉 = 〈LK(0) ∨ · · · ∨ LK(n)〉, they are isomorphic.
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On S, the natural map Lf
nX → LnX is a BP -equivalence [Rav93, Thm. 2.7(iii)].

This means that LLf
nX = LLnX for all objects X in S, in particular for all BP -

local objects. Therefore LLf
n = Ln = ln is a smashing localization functor on LBP .

The acyclics are 〈LLf
n(LS

0)〉 = 〈LLf
nS

0〉 = 〈LT (0) ∨ · · · ∨ LT (n)〉. These are the
same acyclics as for lfn , and so we conclude that lfn and ln are isomorphic, and the
natural map lfnX → lnX is an isomorphism. �

Proposition 6.10. The GSC fails in LBP .

Proof. The proof of the last theorem showed that Ln : LBP → LBP is a (different)
smashing localization for each n. However, by [HS99, Cor. B.13] the category LBP

has no nonzero compact objects. �

Note that the SDGSC could still hold, since all the smashing localizations we
have identified on LBP are of the form Ln = ln = lfn , so are generated by strongly
dualizable objects. The question of finding any other smashing localizations on
LBP is probably at least as hard as doing so on S, in light of Proposition 3.16.

All of 〈E(n)〉, 〈K(n)〉, 〈HFp〉, and 〈I〉 are “small” in BL(S), so by Lemma 2.8
it is not surprising that the Bousfield lattices of their localized categories are not
very large; this is not true of 〈BP 〉 in BL(S). We have the following bounds on the
Bousfield lattice of the local category.

Proposition 6.11. The Bousfield lattice of LBP has 2ℵ0 ≤ |BL(LBP )| ≤ 22
ℵ0

.

Proof. The second inequality is Corollary 2.7. Since 〈K(i)〉 ≤ 〈BP 〉 for all i,
we have 〈Q〉 = 〈

∨
i≥0 K(i)〉 ≤ 〈BP 〉, and so by Propositions 2.6 and 4.2 we have

|BL(LBP )| ≥ |BL(H)| = 2ℵ0 . �

6.4. The F (n)-local category. We conclude with a short discussion of the F (n)-
local category.

Any smashing localization L : S → S gives a splitting of the Bousfield lattice

BL(S)
∼
−→ BL(LLS0)× BL(LCS0),

where 〈X〉 7→ (〈X∧LS0〉, 〈X∧CS0〉). See [IK13, Prop. 6.12] or [Wol13, Thm. 5.14]
for more details. If we take L = Lf

n : S → S, then we have 〈LS0〉 = 〈T (0) ∨ · · · ∨
T (n)〉 and 〈CS0〉 = 〈F (n + 1)〉. Of course, the relationship between LT (0)∨···∨T (n)

and LE(n) of Subsection 5.1 is immediately related to the original TC1n in S. How-
ever, this suggests that LF (n) is worth investigating further.

By Lemma 2.10, in BL(S) there is a chain

〈S0〉 = 〈F (0)〉 ≥ 〈F (1)〉 ≥ 〈F (2)〉 ≥ · · · ,

and by Lemma 2.8 this gives a chain of lattice surjections

BL(S) = BL(LF (0)) ։ BL(LF (1)) ։ BL(LF (2)) ։ · · · .

From the above observations, we expect BL(LF (n)) to be about as complicated as
BL(S). For example, F (n) ∧ I 6= 0 for all n, and so LF (n)I is a square-zero object
in LF (n). This means that, unlike in most of the localized categories discussed
throughout this paper, we know that BA(LF (n)) 6= BL(LF (n)).
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