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The majority of my conventional research has been in tensor triangulated category the-
ory, at the intersection of algebraic topology, derived categories, and homological algebra. In
the last year I have also been studying topological data analysis. My working hypothesis is:
mathematicians create perspectives, and discover consequences. My research process centers on
a conscious effort to balance the visionary and the technical.

My most recent research paper [Woll5a] reposed and answered a question from classical
stable homotopy theory, the telescope conjecture, in localized categories of spectra. These
results land squarely in topology. Before that, I published a paper [Wol14] on the structure of
derived categories of some non-Noetherian rings — results that belong to homological algebra.
The common theme of these two different papers is an appeal to bigger-picture methods of
tensor triangulated category theory, and more specifically an investigation of a certain lattice
(the Bousfield lattice) that can be extracted from such categories. In Sections 1.1 and 1.2 of
this document, I will give more details and will describe my contributions, my current lines of
research, and some opportunities for undergraduate research.

Topological data analysis is a new and exciting approach to applying topology to study the
“shape of data”. Recently category theory has been brought to bear on the more theoretical
and structural questions of TDA. Furthermore, interesting data sets can be subjected to this
analysis, and no one really knows what we’ll find; theory and application are leap-frogging each
other and there are potentials for student involvement. More details are in Section 1.3.

¢

However, the real targets of my mathematical inquiry — the questions that I confront with
passion and that keep me up at night — center on understanding the experience of doing math-
ematics. What is it like, and how do we do it, when we learn, understand, create/discover,
communicate, or teach math? I have many projects, some quite quirky, flowing from this
sustained inquiry. I will describe the main directions briefly here, with much more detail in
Section 2.

The User’s Guide project. A user’s guide — at the same time humanistic and technical —
is written to accompany a published research article, providing further exposition and context
for the results. I have started an informal journal, Enchiridion, in which authors write user’s
guides to their own published research papers, and work collaboratively to group-peer-review
each others’ submissions. The goal is to make research mathematics more accessible, to explore
unconventional expositional styles, and to augment rigor with humanistic meta-data.

The project website, where the first issue is available, is mathusersguides.com. An intro-
duction to the project appeared in [MMW15]; the second issue and a meta-analysis of the
project are in progress. See Section 2.1.

Mathematical phenomenology. What does it mean to understand mathematics? What does
it feel like? What are characteristics of the experience of having an advanced understanding of
a mathematical subject? In collaboration with philosopher of science Alexandra Van-Quynh,
and using methodology from Phenomenology, I have conducted a focus group, survey, and
interviews with research mathematicians. Our first paper is in progress, but a preview PDF is
available on my website!.

To contrast the experience of experts and novices, at Lawrence I conducted an IRB-approved
study that videotaped students working together on a group theory problem set, and followed
up with one-on-one interviews. The analysis of these videos is in progress. See Section 2.2.

Math-art collaborations. I have a large portfolio of collaborations with artists — exhibited
work, performance, video, song, and published papers — that address the mathematical ex-
perience. Recent projects include a student musical performance of student poems based on

ISee tinyurl.com/0j41472
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mathematicians’ reflections, and drawings and calculations done while trekking in the Indian
Himalaya. For more details, see forthelukeofmath.com or Section 2.3.

Contemplative pedagogy. As I discuss in my teaching statement, for several years I have
been involved in the contemplative education movement, for example using short mindfulness
activities to start class. This year I created a collaborative wiki site? to build a database of
pedagogical techniques that apply specifically to college-level mathematics courses. Along with
Justin Brody, at Goucher College, I am organizing a contributed paper session at the 2016 Joint
Meetings in Seattle, titled Contemplative Pedagogy and Mathematics.

Exposition and outreach. My interest in understanding the mathematical experience is
partially motivated by my desire to share this experience with others. Many of my math-
art projects, for example, have been designed to reveal the mathematical experience to non-
mathematicians. As documented in my CV, since 2009 I have been working to find unique and
unconventional ways of sharing mathematics. For example, the Gardens of Infinity project,
up at gardensofinfinity.com, is a recent collaboration with an interaction designer and pro-
grammer. The site is a web-based interactive experience aimed at the average web surfer with
a curiosity about infinity. See Section 2.4 for more details and examples.

1. CONVENTIONAL RESEARCH

I will first describe my work in homological algebra, relating to [Woll4], then my work
in stable homotopy theory that resulted in [Wollbal, and finally my recent involvement with
topological data analysis.

Each subsection provides some background, discusses my contributions, and discusses future
work. Sections 1.1.4 and 1.3.3 describe some opportunities for undergraduate involvement.

1.1. Derived categories and the Bousfield lattice.

1.1.1. Background. Let T be a tensor triangulated category with tensor (i.e. smash) product
denoted A and unit 1. For example, one can take T to be the (p-local) stable homotopy category
S of spectra, or the derived category D(R) of unbounded chain complexes of R-modules, for a
commutative ring R. For an object X of T, the Bousfield class of X is defined to be

(X)={WinT|WAX =0}

It was recently shown by Iyengar and Krause [IK13, Thm. 3.1] that every well generated
tensor triangulated category has a set (rather than a proper class) of Bousfield classes. A
relatively weak condition, most main examples of tensor triangulated categories are known to
be well generated; for example this is the case with S and D(R). This set of Bousfield classes is
called the Bousfield lattice BL(T) and has a lattice structure which I will now briefly describe.
Refer to [HP99] or [Wol14] for more details.

The partial ordering is given by reverse inclusion: we say (X) < (Y) when WAY =0 =
W A X =0. Then (0) is the minimum and (1) is the maximum class. The join of any set of
classes is \/;c;(Xi) = ([1;e; Xi), and the meet is defined to be the join of all lower bounds.

The smash product induces an operation on Bousfield classes, where (X) A (Y) = (X AY).
This is a lower bound, but in general not the meet. However, if we restrict to the subposet
DL = {(W) | (W AW) = (W)}, then the meet and smash agree. Since coproducts distribute
across the smash product, DL is a distributive lattice.

We say a class (X)) is complemented if there exists a class (X°) such that (X) A (X€) = (0)
and (X) V (X¢) = (1). The collection of complemented classes is denoted BA. For example,
every smashing localization (see Subsection 1.2.1) L : T — T gives a pair of complemented
classes. Every complemented class is also in DL, so BA is a Boolean algebra and we have
subposet inclusions BA C DL C BL.

2See contemplativemathematicspedagogy.wordpress.com
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The Bousfield lattice was first introduced by Bousfield [Bou79a], for the category of spectra,
and subsequently studied there and in categories arising in algebra and representation theory;
see e.g. [Rav84, HPS97, HP99,1K13].

The Bousfield lattice of some categories is basically completely understood. When R is a
commutative Noetherian ring, the Bousfield lattice of D(R) is isomorphic to the lattice of subsets
of the prime spectrum Spec R, ordered by inclusion [Nee92]. This result has been generalized
to stratified categories [BIK11a], such as the stable module category of a finite group [BIK11b].
Here the Bousfield lattice is isomorphic to the lattice of subsets of the cohomology ring.

For non-Noetherian rings the picture is less clear. Fix n; > 0 and a countable field k, and
consider the graded-commutative ring

klxy,za, ...]

(]t 252, ...)]

with deg(z;) = 2°. The objects in D(Ay) are then bigraded. Neeman [Nee00] first considered
the Bousfield lattice of such a ring. Dwyer and Palmieri [DP08] show that, although the prime
spectrum is trivial, the cardinality of BL is exactly 22" Also BA is trivial, and there are objects

of arbitrary nilpotence height. Thus not only does the non-Noetherian case differ significantly
from the Noetherian one, but it displays similarities with the topological case.

A =

1.1.2. My contributions. My thesis work, subsequently written up in [Woll4], looked at the
Boustfield lattice of derived categories of several non-Noetherian rings. In particular, fixing a
prime p, I considered the graded rings
R[:cl, ZIo, ]
(7, z52,...)

I developed a theory for Bousfield lattices of localizing subcategories (i.e. those triangulated
subcategories closed under taking coproducts) that are proper; since these don’t contain the
tensor unit, the relationship between BA, DL, and BL is more subtle. Write BL(R) as shorthand
for BL(D(R)), etc. There are projection and inclusion maps g : Az, — Ar, and h: Az, — Aq,
and I showed these induce lattice maps ge : BL(Az,,) &= BL(Ar,) : g* and he : BL(Az,)) =
BL(Ag) : h®.

One main result was the following lattice isomorphisms. Here loc(X) denotes the smallest
localizing subcategory containing X.

AR: s fOI‘R:Fp,Q, and Z(p)

Corollaries 5.17 and 5.18 [Woll4]: The functors ge and he induce lattice isomorphisms

BL(Az,,) = BL(Ag,) x BL(loc(h*Ag)),
DL(Az,,) = DL(Ag,) x DL(loc(h*Ag)),
BA(Az,,) = BA(Ag,) x BA(loc(h*Ag)).

More generally, [Wol14] considers a ring map f : A — B between two commutative rings.
Extension of scalars and the forgetful functor induce well-behaved adjoint functors fo : D(A) =
D(B) : f*, and I showed these induce lattice maps fo : BL(A) = BL(B) : f*. I was able to
prove a range of results in this general setting.

In 2013, I shifted from homological algebra to stable homotopy theory. If Ly : § —» S is a
homological localization functor on the category S of p-local spectra, annihilating the Bousfield
class (Z) of Z,-acyclics, then the essential image of Lz has the structure of a well generated
tensor triangulated category. This category is called the Z-local category.

The paper [Woll5a] calculates the Bousfield lattice of several local categories of spectra. I
give an upper bound, 22N0, on the cardinality of such lattices. Then I show that the K (n)-local,
HTF,-local, and I5%local categories all have two-element Bousfield lattices, where I.S? is the
Brown-Comenetz dual of the sphere. Jon Beardsley has calculated the Bousfield lattice of the
harmonic (i.e. V,;K(i)-local) category to be isomorphic to the power set of N; I show that one
can realize this lattice as an inverse limit of the Bousfield lattices of E(n)-local categories, as n
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ranges over N. Finally, I give a lower bound, 2%°, on the cardinality of the Bousfield lattice of
the BP-local category.

1.1.3. Future directions. Javier Gutiérrez, at the Radboud Universiteit Nijmegen, and I have
started a project aimed at understanding the Bousfield lattice of derived categories of R-module
spectra, as in [EKMMO97]. Given an S-algebra R, the derived category of R-modules D(R) is
a well generated tensor triangulated category. We believe the general theory developed in my
thesis and [Woll4], studying the lattice maps BL(D(A)) = BL(D(B)) induced by a commutative
ring map f: A — B, can be applied here. If f: R — T is a map of S-algebras, there should be
induced lattice maps BL(D(R)) = BL(D(T)).

One direction to take this, is to let R = S° be the sphere spectrum, and T = HA be an
Eilenberg-MacLane spectrum for a commutative ring A. Then D(S) is the entire category of
spectra S, and D(H A) is equivalent to the algebraic derived category D(A). This will give useful
lattice maps between BL(S) and BL(D(A)), that is, between topology and algebra. Choosing
different rings A may help understand BL(S).

1.1.4. Opportunities for undergraduate research. Although category theory is an incredibly ele-
gant field, probing the essence of mathematical structure, it is tough stuff for an undergraduate.
However, my research extracts a lattice, the Bousfield lattice, from various categories, and lat-
tice theory is very approachable. Basic results on the distributive lattice DL and Boolean
algebra BA in Bousfield lattices have been fleshed out in the past decades, starting with Bous-
field himself. But many lattice theory ideas have yet to be applied to Bousfield lattices. The
Boustfield lattice of spectra seems to be as complicated a lattice as one could ever hope for, and
is very far from understood.

I envision several undergraduate research projects, starting from a lattice theory text such
as [Bir79] or [DP02]. Even notions like DL and BA are accessible, computable, and fun. Slightly
more advanced lattice theory — chains, idempotent elements, complementation operations — are
also accessible, and furthermore are applicable and relevant to current research on Bousfield
lattices. While I will need to provide information about various categories as a sort of black
box, the students will experience the process of developing a background in classical material,
using it to create a new perspective on an area of current research, asking new questions and
then seeing what results.

1.2. Localizing subcategories, telescope conjectures, and localized spectra.

1.2.1. Background. A full subcategory of a triangulated category is localizing if it is closed
under forming triangles and taking coproducts. A central question of triangulated category
theory is to understand or classify localizing subcategories. In many cases, such as the p-local
stable homotopy category S, it is not even known if there is a set (rather than a proper class)
of localizing subcategories. It is suspected the answer may depend on large cardinal axioms of
set theory. Every Bousfield class is a localizing subcategory, and another important question is
when the converse is true as well. Greg Stevenson recently gave the first example of a category
with a localizing subcategory that is not a Bousfield class [Stel4].

Another important question in tensor triangulated category theory, going back to Bous-
field [Bou79b], is to classify smashing localization functors. A localization functor L : T — T
on a tensor triangulated category T is, loosely, a useful idempotent functor. A localization func-
tor is smashing if it commutes with coproducts. A localizing subcategory is called smashing if
it is the kernel of a smashing localization functor.

These questions are at opposite ends, in the following sense. Every smashing localization
yields a pair of complemented Bousfield classes, so we have the following chain of inclusions of
collections of localizing subcategories.

{smashing localizing subcategories} C BA C DL C BL C {all localizing subcategories}

The telescope conjecture, first stated by Ravenel [Rav84, Conj. 10.5], is a famous claim
about two classes of localization functors, L{ and L,, in the p-local stable homotopy category
4
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of spectra. For all n > 0, L} and L,, are smashing localizations, and there is a natural map
Lf — L,. There are several versions of the telescope conjecture, but it essentially claims that
L and L,, are the same. The conjecture is known to hold for n = 0 and n = 1. A valiant
but unsuccessful effort at a counterexample, for n > 2, was undertaken by Mahowald, Ravenel,
and Shick, as outlined in [MRSO01]. Since then little progress has been made, and the original
conjecture remains open.

A generalization of the telescope conjecture can be stated for spectra, as well as other triangu-
lated categories. Localization away from a finite spectrum, i.e. a compact object of the category,
always yields a smashing localization functor (see e.g. [Mil92] or [HPS97, Thm. 3.3.3]). This is
called finite localization. The Generalized Smashing Conjecture (GSC) is that every smashing
localization arises in this way. If true, then every smashing localization is determined by its
compact acyclics; if the GSC holds in spectra, then so must the original telescope conjecture.

The GSC, essentially stated for spectra decades ago by Bousfield [Bou79b, Conj. 3.4], has
been formulated in many other triangulated categories, in many cases labeled as the telescope
conjecture, and in many cases proven to hold. Neeman [Nee92] made the conjecture for the
derived category D(R) of a commutative ring R, and showed it holds when the ring is Noe-
therian. On the other hand, Keller [Kel94] gave an example of a non-Noetherian ring for which
the GSC fails. Benson, Iyengar, and Krause have shown that the GSC holds in a stratified
category [BIK11a], such as the stable module category of a finite group [BIK11b].

1.2.2. My contributions. In [Woll5a], I reformulate the telescope conjecture, and GSC, in cat-
egories of local spectra. That is, for a localization L : S — S, the essential image of L has the
structure of a tensor triangulated category, denoted £, which I consider.

One of the main results is the following. I weaken the assumptions for finite localization, and
show that in many categories, localization away from any set of strongly dualizable objects yields
a smashing localization. (An object X is strongly dualizable if F(X,Y) = F(X,1) AY, where 1
is the tensor unit and F'(—, —) the function object bifunctor.) Specifically, I prove the following.

Theorem A [Wollba]: Let T be a well generated tensor triangulated category such that 1 is
strongly dualizable and loc(1) = T. Let A = {By,} be a (possibly infinite) set of strongly dual-
izable objects. Then there exists a smashing localization functor L : T — T with Ker L = loc(A).

This leads to the Strongly Dualizable Generalized Smashing Conjecture (SDGSC): Every
smashing localization is localization away from a set of strongly dualizable objects.

I give several examples of categories where the GSC fails, but the SDGSC holds. To do this,
one must classify smashing localizations on the local category.

Theorem C [Wollbal: In the harmonic category, the GSC fails but the SDGSC holds. Likewise
in the HF,,-local and I5°-local categories, where 1S° is the Brown-Comenetz dual of the sphere
spectrum. In the BP-local category the GSC fails but the SDGSC may hold. In the E(n)-local
and K (n)-local categories the GSC and SDGSC both hold.

Furthermore, I define localization functors lfL and [, on £ that are localized versions of L
and L,,. The localized telescope conjecture (LTC), basically, is that I} and I, are isomorphic. In
fact, I give three versions of the LTC, and implications between them. Then, examining specific
examples of localized categories of spectra, I conclude the following.

Theorem B [Wollbal: All versions of the localized telescope conjecture, LTC1;, LTC2;, and
LTC3; hold for alli > 0, in the harmonic, K (n)-local, HF,-local, BP-local, and I5°-local cate-
gories.

Finally, I show that in the IS%local category there exists a localizing subcategory that is
not a Bousfield class. This gives strong evidence to suggest the same is true in the full category
of spectra as well.
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1.2.3. Future directions. Several questions remain from the work in [Wollbal. Question 3.15
therein asks if [, is always smashing, as L, is always smashing on §. Furthermore, I have
some ideas for calculating smashing localizations in the BP-local and F(n)-local categories. A
classification of the localizing subcategories of the harmonic category seems within reach, now
that the Bousfield lattice is known to be 2V, and I better understand the relationship between
the harmonic and E(n)-local categories.

1.3. Topological data analysis.

1.3.1. Background. Imagine a data set X, in the form of a point cloud in some high-dimensional
parameter (metric) space. Choose some k > 0, and center balls of radius x at each point in
the cloud. The result is a topological space (X, k). Now imagine continuously or discretely
changing k, and keeping track of all the (X, x). To reduce the computational complexity of
(X, k), we can replace it with a simplicial complex V (X, k) called the Vietoris-Rips complex,
in such a way that for k1 < k2, we get an inclusion V(X, k1) C V(X,k2). Now we can “do
topology” on these spaces, by taking homology H;(—) for each ¢ > 0. By varying x and studying
the changes in H;(V (X, k)), we extract information about the original data set. This is called
persistent homology [EMD12].

Persistent homology is one — the most common — technique in the decade-old field of topo-
logical data analysis. This analysis has been performed — implemented in new software like
Javaplex, Perseus, and DIPHA — on interesting data sets, with interesting results. A recent
survey [NOMPUTT15] lists applications to breast cancer [NLC11], viral evolution [CCR13],
natural images [CIDSZ08], contagion spread on networks [TKH'15], structure of amorphous
materials [NHHT15], and collective behavior in biology [CTLZTH14].

The theory of persistent homology has also been developing fast, and recently category theory
has been brought more clearly into the picture. From the categorical perspective, for example,
the output of persistent homology is an (R, <)-indexed diagram in the category of vector spaces.
Different choices of sequences of k yield different diagrams. Going further, a recent paper [BS14]
constructs an abelian category of e-interleavings, which are, in a sense, ways of measuring the
distance between diagrams coming from different choices of k sequences.

1.3.2. My contributions, and future directions. For a year and a half, I have been slowly catch-
ing up and keeping up with the TDA literature, attending online seminars run by the Algebraic
Topology Research Network based out of the IMA at the University of Minnesota. In summer
2014, I ran a 4-day workshop and taught the basics of Rips complexes and persistent homology,
albeit at a basic level and geared toward non-mathematicians. In winter 2015, I joined the
AATRN research team on Category Theory, Sheaf Theory and Applications, and the group
of us — spread around the country — are teaching each other and moving towards formulating
good research questions. The majority of team members are approaching TDA from the ap-
plied mathematics side, and my familiarity and comfort with category theory is an asset. I'm
confident that in the near future we will coalesce around good lines of inquiry.

Topological data analysis is exciting because it offers opportunities for both theoretical and
practical advances. In addition to studying papers and trying to bring category theory to the
theoretical table, I've been teaching myself how to actually perform the analysis on real data
sets. I've been running and becoming comfortable with the TDA software Javaplex, running
it inside Processing. Processing is a language specifically designed with visualization, and in
fact visual art, in mind. Using Javaplex with Processing has taken lots of self-study, but offers
much potential for bringing data sets and TDA to life.

1.3.3. Opportunities for undergraduate research. 1 believe there are significant opportunities for

student involvement. The basics of TDA can be taught at the undergraduate level. In fact, in

December 2015, I plan to co-teach a short course on the basics of TDA at Lawrence, assuming

no prerequisites. Since the field is new, a clever student familiar with topology and willing to

learn some category theory can reach the frontier of our theoretical knowledge. Furthermore,
6
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a student interested in programming or Big Data could, with help, certainly run the persistent
homology algorithms on his or her favorite data set.

2. PROJECTS AND RESEARCH ON THE MATHEMATICAL EXPERIENCE

2.1. The User’s Guide Project. Have you ever read a math paper and wondered, how did
they come up with this? Why? What’s really going on here? What’s the best way to think
about this?

A user’s guide — at the same time humanistic and technical — is written to accompany a pub-
lished or soon-to-be-published research article, providing further exposition and context for the
results. I created an informal journal Enchiridion, which brings together five mathematicians
to write user’s guides on their own papers, and then to work closely together to collaboratively
group-edit and peer-review a compilation. Our user’s guides are composed of four topics:

Topic 1: Key insights and organizing principles — What is the conceptual essence
of the paper? What’s really going on?

Topic 2: Conceptual metaphors and mental imagery —What mental imagery do
you have when you think about these results? What conceptual metaphors do
you use? How should we think about it?

Topic 3: Story of the development — Where and when did these ideas and re-
sults actually arise? To complement those straight logical lines in your proofs,
tell us the story of how you actually went from A to B.

Topic 4: Colloquial summary — How would you explain it to a non-mathematician?
Additionally, what about this subject is so exciting and meaningful to you?

As T wrote in the published announcement [MMW*15], “One can think of these user’s guides
as meta-data for the ideas and results in the source paper, attaching a bit more humanity to
the objective representations and reasoning. Including this information closes the gap between
the practice of mathematics and the artifacts of that practice.”

The first issue came out October 2015, and is available at mathusersguides.com. I have five
new writers working on Volume 2, with finalized topics rolling out throughout the year and a
full compilation to be completed by October 2016. The writers, with my help, are responsible
for reviewing and editing each others’ guides, and this has been generating interesting meta-
discussions about mathematical exposition. The Journal of Humanistic Mathematics has asked
us to write up an analysis of the project, to be submitted by the end of 2016. My intention is
that Enchiridion will publish issues annually, each issue bringing together five mathematicians
from a common subfield.

This project has grown out of several earlier projects. As a grad student, in 2008 and 2010 I
organized and ran a reading group/seminar titled The Mathematical Ezperience, which brought
together undergrads, grad students, faculty, and even some staff, to read metamathematical
writings and to create an environment to discuss the experiential side of mathematics. This
is something I would be thrilled to revive at a new school. My interest in augmenting rigor
with experiential meta-data also made its way into my PhD thesis, in which every chapter of
rigorous mathematics was concluded with an Experiential Context section.

Additionally, for two years during and after grad school, I documented recurring experiences
of doing research mathematics in the Flavors and Seasons blog3. A flavor lasts for a few minutes
or hours, for example “working through a proof”’, whereas a season, like “pulling together and
writing up”, lasts for weeks or months. By answering a fixed set of questions, I would document
the cognitive, meta-cognitive, emotional, and logistical aspects of these experiences. In 2013

3See flavorsandseasons .wordpress.com



Frank Lucas “Luke” Wolcott Research Statement
luke.wolcott@lawrence.edu forthelukeofmath.com

I wrote a paper about this blog [Woll3a], making the case that these experiences are shared
among our community, and that self-reflection makes for better mathematicians.

2.2. Mathematical phenomenology. What does it mean to understand mathematics? What
does it feel like? What are characteristics of the experience of having an advanced understanding
of a mathematical subject?

One common approach to humanistic questions such as these is qualitative: probing anec-
dotes from the wise elders of mathematics, as in [Har92, ByelO, Ano, TT, WT10]. Another
is quantitative: analyzing statistics from math education studies, for example in comparing
the development of procedural versus conceptual understanding in primary and secondary
school [RJS98, RISA01].

I have two ongoing projects that I will discuss here, both taking a middle road between
qualitative and quantitative: first, a collaboration with a philosopher of mathematics in which
we interviewed professional mathematicians; and second, a gestural study that filmed Lawrence
students working together.

2.2.1. Elicitation interviews. Since 2013 I have been working on a collaboration with philoso-
pher of mathematics Alexandra Van-Quynh, using the methodology of the elicitation interview
and its analysis. This methodology from Phenomenology, pioneered by Pierre Vermersch [PV94]
in the 1990s and further developed by Bitbol, Petitmengin, Maurel, and many others, aims to
bracket and suspend present experience in order to (re)evoke a specific past experience and
explore its microdynamics. It has been used to investigate a wide range of experiences —
for example seizures [PBNOG], visual perception [PRCCT13], listening to music [Po09], intu-
ition [Pet99], and mathematical intuition [AVQ15]. Phenomenology sees reality as comprised
of lived experience, and every event as an interconnected unfolding of a perceiver and a per-
ceived. Our elicitation interviews provided us with detailed descriptions of the lived experience
of mathematical understanding, from which we are working to extract a generic intersubjective
structure.

We specifically chose to look at the experience of understanding groups. Groups are basic
objects that all research mathematicians know about; they are a representative example of
modern abstract mathematics; there is rarely canonical visual imagery associated to groups.
With visual faculties handicapped in this way, our hope in investigating the experience of groups
was that non-visual modes of reasoning and perception would be amplified.

In 2013 we conducted a focus group to help develop a list of survey questions about the
experience of working with groups. This survey was sent out to practicing research mathe-
maticians, and from the 30 responses we moved to focus on the question of understanding. In
2014 Alexandra, who is trained in the elicitation interview technique, conducted four 1-2 hour
interviews with a subset of survey respondents. Questions focused first on the experience of a
group that the mathematician reported understanding very well, and then on the experience of
a group that was reported as not understood or not fully understood.

The analysis of the interviews is still in progress, but there is a short summary PDF available
on my website that summarizes our findings*. We expect the interviews will result in at least
two published articles.

To discuss one example, we found a common trend in the development of mental imagery.
When a mathematician is led to evoke the experience of working with a group that they do not
understand (or understand in a basic way), whatever imagery is present is specific, canonical,
and symbolic. They describe imagery based on the definition, or only see the standard symbol
used to represent the group. They clearly struggle to visualize the group — “To not understand,
is to not have a clear image of its elements”; “You don’t have a good picture of it”; “you don’t
see them all, there’s too many”.

On the other hand, we found much evidence that when a mathematician is led to evoke
the experience of working with a group that he or she understands well, the imagery becomes

4See tinyurl.com/0j41472
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more streamlined, efficient, and intentionally fuzzy. We heard: “I was seeing sort of a penta-
gon/hexagon... something with some sides but not too many sides, because my mind cannot
see too many sides, not too few sides because then it’s too particular”; “It’s really an archetype.
It’s an archetype of an element. It’s not an element in its own”; “It’s like there’s this frame-
work”; “They don’t need to be precise”; “So when the number gets bigger, I just let the picture
become a little fuzzier, and I pretend that I'm still imagining it just as well”.

It seems that having too many details adds unnecessary cognitive weight to the image,
and slows down reasoning. The mathematician who understands a group will leave out those
unnecessary details in his or her images, in a gradual streamlining process. This push to
streamline keeps the images primitive and fuzzy, while remaining incredibly useful. The paradox
of images that are primitive yet useful is that they are useful because they are primitive.

2.2.2. Undergraduates working together on group theory. To contrast the experience of experts
and novices, I am conducting an IRB-approved study with Lawrence undergraduates. What
does understanding mean to an undergraduate, and how is this different than the experience of
an expert?

In winter 2015 I was teaching a course on group theory. Two specific lectures, in which
I taught about the symmetric group and cycle notation, were filmed. Five of my students
volunteered to participate in the study. A month after the lectures, they were given a problem
set about the symmetric group, and filmed while they worked together for 90 minutes on the
problems. The footage captured their hand gestures, body language, and boardwork, in addition
to their conversations. One week later I conducted one-on-one follow-up interviews with each,
asking about the problems and their experience of understanding or not understanding those
problems.

The comparison of the hand gestures and boardwork of my original lectures and the students’
work will hopefully reveal insight into the type of understanding and ways of understanding of
the students. This analysis is inspired by work on embodied mathematical cognition [LNOO,
N11i06], and has been aided by conversations with Lawrence University professor of Education
Bob Williams, and his work in this area [Will2].

2.3. Math-art collaborations. Works of math-art, such as those exhibited at the Joint Meet-
ings, often struggle to engage both contemporary mathematics and contemporary art. Often
the work of a mathematician with little art training, or an artist with little math training, they
can resort to craft and recreational math, and miss their mark. Yet, mathematics and art are
ancient institutions of creativity and transcendence that should not remain indifferent to one
another. I believe the solution is collaboration: expert mathematicians working with expert
artists to create work that is relevant to both communities.

Since 2007 I have been collaborating with artists — trained fine artists, musicians, visual
artists, and dancers — to create relevant math-art work that engages both contemporary math-
ematics and contemporary art. Work has been exhibited in galleries or performed in Portland,
Baltimore, Seattle, Berlin, Sweden, Denmark, The Netherlands, and most recently India. These
projects are listed on my CV right after my publications, because I believe they hold water.

For descriptions with images, video, and supplementary documentation, please visit my
website. Here I will describe some activities that have come out of these pieces, and then
explain just one recent project and one future project in more detail.

I have given many talks on my solo projects and collaborations, including a presentation
during a 5-day workshop on math and art at the Banff International Research Station in 2011.
Bringing together mathematicians and artists to speak, I’ve helped organize several salons, one
in collaboration with the Math Department at the University of Copenhagen.

Elizabeth McTernan and I have written two published papers about our work [MW12,
MW13], and a manifesto “A capacity for the sublime”: math and art as experience, which
is available on my website. We recently submitted a paper [MW15] on one of our pieces to the
interdisciplinary journal Leonardo.
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For two years I have served on the conference program committee of the annual Bridges
conference, which brings together hundreds of artists and mathematicians for a conference
with an exhibition. I also help referee their proceedings. In 2013 I was asked to write a
report [Woll3b] on the Bridges art exhibition, for the Journal of Mathematics and the Arts.
This summer, The Mathematical Intelligencer asked me to write a book review [Woll5b] of
Robert Tubb’s Mathematics in 20th-century literature and art.

Describing one piece may help to illustrate my approach. As described in Section 2.2, in
2013 I gathered written reflections from research mathematicians about their lived experience
of working with group theory. In fall 2014, the collated survey responses were handed over
to the Lawrence Creative Writing Club. The student writers produced six poems based on
the mathematicians’ comments. These were then delivered to the Lawrence improvisational
music ensemble, IGLU. The group used the poems as inspiration for eight structured musical
improvisations, which were presented in a concert in February 2015. A recording is available
on YouTube®. T also wrote a report [Woll5c|, to appear in The Mathematical Intelligencer,
analyzing the project as a metaphor for certain aspects of mathematical practice, and as a
template for future collaborations.

My next project also involves undergraduates. At the 2014 MathFest in Portland, I organized
and co-facilitated a four-day collaborative evening workshop, bringing together mathematicians
and local dancers. The math we learned was topological data analysis; the dance we did was
structured improv; the piece was called Bodies of Data. During the two-week December 2015
term here at Lawrence, dance teacher Monica Rodero and I are doing a repeat of this workshop,
expanded and adapted to fit the new context.

2.4. Exposition and outreach. Perhaps informed by my diverse travel and work experience
(see the Miscellaneous section of my CV), I have a strong interest in reaching out of academia
to make mathematics and the mathematical experience accessible and relevant to the world.

The first manifestation of this passion was a whimsically-titled 142-page book of essays, My
name is not Susan: a love story between mathematics and non-mathematics that I self-published
in 2009. The essays aim to relate math to real life, while reflecting on the mathematical
process and culture. This was well-received, with Reuben Hersh, co-author of The Mathematical
Experience, which won the National Book Award in 1983, telling me: “The intention behind The
Mathematical Experience was to pull aside the veil around the life and work of mathematicians,
to show and tell the rest of the world about us. Much of what you write does that, better than
we did.”

I occasionally write short pop essays about math topics and post them on my website. There
are now about two dozen, and they come in pairs — a “short answer” and a “long answer” —
geared towards different audiences. Reaching in the opposite direction, as a graduate student
I wrote for the AMS Graduate Student Blog for two years, and my posts tried to pull the real
world into the isolation of graduate school life.

Reaching between disciplines within academia, many of my projects and talks are interdisci-
plinary. The math-poetry-music project described in the previous section, for example, involved
the creative writing club and a music ensemble. The audience at the performance was diverse
and saw mathematics in a new light. I also organized a pre-concert panel where the poets and
musicians could share their experiences of working with math.

The Gardens of Infinity project, at gardensofinfinity.com, was designed from the be-
ginning to have as wide an audience as possible. Imagine a website of curated mathematical
content, designed to inspire careful thought as well as deep reflection. The user enters an in-
teractive and immersive online environment, is presented with five intriguing statements from
Cantor’s set theory, and actively navigates and follows where curiosity leads. Each statement,
for example that |Z| < |R|, is presented with four options: Would you like a short and accessible
explanation? Would you like a careful and rigorous explanation? Would you like to read about

5See tinyurl.com/nlaatbv
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the story and characters behind this statement? Or would you rather like to ponder, to reflect
on what it all means, philosophically and metaphorically?

Gardens of Infinity combines many of the themes that underlie the projects described in this
document: interest in the big picture, exploration of unconventional expositional styles, a desire
to augment rigor with humanism, interdisciplinary collaboration, and art and contemplation
harnessed to illuminate the mathematical experience.
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